w N

~N Sn

10
11
12
13
14
15
16
17

18
19

20

21
22
23
24
25
26
27
28
29
30

No. of pages: 17
DTD 4.2.0/ SPS

JSS 7268
DISK / 26/9/01
<) The Journal of

NH, |

& - Systems and
ﬂ Software

ARTICLE IN PRESS

ELSEVIER

The Journal of Systems and Software xxx (2001) Xxx—Xxx

www.elsevier.com/locate/jss

An estimation of the decision models of senior IS managers when
evaluating the external quality of organizational software

Bonnie Brinton Anderson, Akhilesh Bajaj *, Wilpen Gorr

The H. John Heinz III School of Public Policy and Management, 2105 C Hamburg Hall, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

Received 21 September 2000; received in revised form 23 January 2001; accepted 22 March 2001

Abstract

The increased usage of software in large corporations, coupled with the explosion in software availability has made it important
to evaluate software quality (SQ) from the point of view of its consumers. In this study, we focus on the external quality (quality
from the point of view of the consumer) of off-the-shelf software used in large corporations. We refine external software quality into
four factors. Next, we utilize conjoint analysis (CA) to study the relative values of these factors in the decision models of senior IS
managers, when evaluating software for use by their organization. Our results indicate that software used in large corporations
today has evolved, so that, contrary to earlier studies that indicate learnability and features as important, it is now the reliability of
the software that is the primary factor in IS managers’ decision models. The findings have implications for IS theory, and provide
guidelines for resource allocation for software developers, IS managers, researchers in the area of software reliability and designers
of IS curricula. © 2001 Published by Elsevier Science Inc.

Keywords.: External software quality; Conjoint analysis; Information system managers; Organizational software; Software reliability; Software

learnability; Software response time; Software features

1. Introduction

During the past 15 years, there has been an explosive
growth in computer technology applications, and the
software industry has been growing by orders of mag-
nitude (Cusumano and Kemerer, 1990). Competition
has also intensified with a multifold increase in the
number of firms producing software (Kekre et al., 1995).
With increased competition, it has become more im-
portant for software firms to understand what factors,
that describe software, are important in the minds of
their potential customers. Depending on the software, !

* Corresponding author. Tel.: +412-268-4271; fax: +412-630-8840.
E-mail addresses: bbrinton@andrew.cmu.edu (B. Brinton Ander-
son), akhilesh@andrew.cmu.edu (A. Bajaj), wg0g@andrew.cmu.edu
(W. Gorr).

! The software used in an organization can be split into several levels,
starting from the operating system at the bottom, moving up to
application systems like database management systems, moving up to
end-user applications such as database form applications. Each level’s
quality depends on the levels below it. In this study, we define software
as all the software that all members of the organization would use. Thus,
IS staff may interact with the operating system and the next higher level,
while end-users may react only with the highest levels. Ultimately, the
goal of an organizational IS is, of course, to deliver end-user software.

0164-1212/01/$ - see front matter © 2001 Published by Elsevier Science Inc.

PII: S0164-1212(01)00114-5

the consumers of the software can be either end-users or
the IS staff in an organization.

When evaluating software, the quality of the software
is widely accepted to be one of the most important
factors in the decision models of potential consumers,
regardless of the particular application domain (Fenton,
1991; Florac, 1992). A commonly used (Barbacci et al.,
1995, 1997) definition of software quality (SQ) is that iz
is the degree to which software possesses a desired com-
bination of attributes (IEEE, 1992).

In the past, SQ has often been classified into internal
SQ, which is the quality from the point of view of the
creators (programmers) of the software; and external
SQ, which is the quality from the point of view of the
consumers of the software. Examples of internal SQ are
McCabe’s Cyclomatic method (McCabe, 1976) and
measures derived from Halstead’s software science
(Halstead, 1977), while examples of external SQ are re-
liability and usability from the point of view of the users.
In this work, we focus exclusively on external SQ.

There is considerable previous work on SQ. How-
ever, to the best of our knowledge, there has been only
one study that has looked at the relative weights of some
of the factors that constitute external SQ (Kekre et al.,

31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

70
71
72
73
74
75
76
77

JSS 7268 ARTICLE IN PRESS No. of pages: 17
DISK / 26/9/01 DTD 4.2.0/ SPS
2 B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx
Table 1

List of external SQ factors listed from previous works

Factor name Description Some references

Reliability What confidence can be placed in what it does/does it behave as Barbacci et al. (1995), Bays (1995), Keller et al. (1990,
intended? 1995)

Survivability How will it perform under adverse conditions? Keller et al. (1990)

Usability How easy is it to use? Keller et al. (1990, 1995)

Correctness/capability How well does it support features that are needed by the user? ~ Bays (1995); Keller et al. (1990, 1995)

Maintainability How easy is it to repair/upgrade? Barbacci et al. (1995), Keller et al. (1990, 1995)

Interoperability How easy is it to interface with other systems? Keller et al. (1990)

Installability How easy is it to install? Kekre et al. (1995)

Performance How quickly does it respond to users? Barbacci et al. (1995), Bays (1995), Kekre et al. (1995)

Documentation What kind of user manuals and online help are available? Kekre et al. (1995)

Table 2

Definitions of factors identified in (Bajaj, 2000) as affecting the evaluation models of senior IS managers regarding computing architectures for their

organizations

Factor Definition

Software quality
Centralization v/s distributed nature

Costs

Acceptance of the architecture

Backward compatibility of the
architecture

The quality of software associated with the architecture. This can include response time to end-users,
quality of user interface, and features provided by the software

A centralized architecture means that software resides in a centralized location, and most of the
hardware investment is also centralized

The costs of a architecture include the costs of acquisition of hardware, software, the costs of
maintenance of hardware, of controlling different versions of the software and the costs of personnel
trained in maintaining the hardware and software

This factor represents the degree to which a particular architecture has been accepted by IS magazines,
the media, model organizations, and software and hardware vendors

This factor models the degree to which a architecture will cause changes in the organization. Changes
include: converting old data to be read by the new architecture, retraining users to use and IS personnel

to maintain the software and hardware

1995). There is thus still a need to learn more about the
different factors that constitute external SQ, and the
relative weights of these factors. The primary contribu-
tion of this work is the identification and measurement
of the relative weights of the factors that senior IS
managers consider, when they evaluate software for
their organization.

The question we are addressing here is of interest not
only to IS theory, but also to IS managers in industry.
The answers to this question will (a) give senior IS
managers insight into the decision models of their peers;
(b) identify the drivers of competitive advantage for
software producers and (c) identify areas of training for
future IS managers in the IS curricula in our universities.

2. Previous work on external software quality

The need to decompose internal and external SQ into
more refined factors was recognized early (Boehm et al.,
1978). Since then, there has been considerable work on
identifying the factors that constitute external SQ. A
general consensus seems to be that external SQ is de-
pendent upon the intended use of the system (Barbacci
et al., 1997; Boehm et al., 1978; Cardenas-Garcia, 1991;
IEEE, 1992; Keller et al., 1990). Thus, external SQ can

be decomposed differently depending on the set of users
and the intended use of the software. The current study
focuses on the external SQ of off-the-shelf software that is
used by employees of large organizations in the USA.

An extensive list of factors that relate to the external
SQ of this type of software can be obtained from pre-
vious literature. Table 1 contains a list of factors that
have been identified by us after reviewing past works.

The factors listed in Table 1 represent different as-
pects of SQ from the point of view of the users. They are
reasonably non-overlapping, and it is conceivable that
all of these factors may be important. To the best of our
knowledge, only one study (Kekre et al., 1995) has
looked at the relative weights of some of these factors.
Based on interviews with focus groups, Kekre et al.
(1995) listed seven factors as being important for eight
different IBM software products used by corporations.
These seven factors are all included in Table 1. Of these
factors, capability was found to correlate most highly
with overall customer satisfaction, which was self-re-
ported. Usability was found to be the most important
factor for end-users of the software, while capability and
reliability were more important for systems program-
mers.

In a study on the identification and relative weights of
factors that drive senior IS managers’ evaluation of

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

Table 3

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx

Factors describing external SQ identified in the current study and how they map to those used in earlier studies

Reference

Features

Learnability

Reliability

Response time

Barbacci et al. (1997)

Boehm et al. (1978)

Cardenas-Garcia (1991)

Christie (1994)

Fenton (1991)

Florac (1992)
1IEEE (1992)

Kekre et al. (1995)

Keller et al. (1990)

QAT (1989)

Non-occurrence of the im-
proper alteration of infor-
mation

All of its parts are present
and fully developed

Features implemented

Completeness, correctness
Existence of certain proper-
ties and functions that sat-
isfy stated or implied needs
of users

Capability: customer satis-
faction with the functional-
ity in terms of key feature
offered

How well does it conform to
the requirements?

Functional requirements

Convenient and practicable
to use, contains uniform
notation, and terminology,
without any excessive infor-
mation

Time to learn, retention over
time, user satisfaction,
overall design quality

Ease of learning, ease of use,
clarity of presentation and
documentation, quality of
on-line help
User-friendliness or the
probability that the opera-
tor of the system will not
experience a user interface
problem during a given pe-
riod of operation

Usability

Amount of user effort re-
quired to understand soft-
ware; the degree to which
user effort required to
understand software is min-
imized; the effort needed for
use and the individual as-
sessment of such use by
users

Usability: initial effort to
learn a software product
and the recurring effort re-
quired to use the product
How easy is it to use?

Ease of use, adequacy of
documentation

Probability that the system
will continuously provide
outputs over a specified
amount of time or the
ability to keep operating
over time, MTTF, readiness
for usage

Can it be expected to per-
form its intended functions
satisfactorily?

Probability of failure-free
operation, failure rates for a
specified environment that is
deemed allowable by the
user

Specific measures

Reliability-IEEE standard
Capability of software to
maintain its level of perfor-
mance under stated condi-
tions for a stated period of
time; survivability; the
degree to which software
can detect and prevent in-
formation loss, illegal use,
and system resource de-
struction

Reliability assesses the
extent of disruption by
failures

What confidence can be
placed in what it does? How
well will it perform under
adverse conditions? How
secure is it?

System reliability, accuracy
of outputs, data security

Time elapsed between the
arrival of an input and its
corresponding output to the
environment

Fulfills its purpose without a
waste of resources

Performance with respect to
individual users, distribu-
tion of arrival times, work-
loads and service time

Space and execution time
efficiency

Efficiency

Relationship of the level of
performance to the amount
of resources used under
stated conditionstime and
resource

Performance

How well does it utilize a
resource?

Response time, timeliness of
outputs

computing architectures 2 for their organizations, Bajaj
(2000) used semi-structured interviews to identify five
factors that are considered by senior IS managers when
evaluating architectures (see Table 2). The findings in-

2 In (Bajaj, 2000), a computing architecture is defined as a new
computing infrastructure that significantly affects the purchasing and
maintenance of hardware and software in an organization. Examples
include a main-frame architecture with dumb terminals, a client/server
architecture and a network computers architecture.

dicate that the external quality of software is the most
important factor in the evaluation models of senior IS
managers. In the current work, we refine external SQ
into component factors, and determine the relative
weights of these factors in senior IS managers’ evalua-
tion models. Our findings here will provide more insight
into which factors in external SQ are the drivers of
better perception of SQ, and hence to the perception of
computing architectures by senior IS managers.

108
109
110
111
112
113
114
115
116

117
118
119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

JSS 7268
DISK / 26/9/01

No. of pages: 17
DTD 4.2.0/ SPS

ARTICLE IN PRESS

4

Table 4

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx

Definitions of external software quality factors used in this study

Factor

Definition

Features

Learnability

Reliability

Response time

Features of software associated with an architecture support what end-users do with the software. E.g., there is a certain
set of core tasks that end-users do with financial data, and software for managing this would have features that support
these core tasks. If the software has sufficient features then all core tasks will be supported. If the software has less features
then some core tasks will not be supported

Learnability of software associated with an architecture measures how easy it is for end-users to learn to use the software
initially and to remember how to use the software subsequently. E.g., if the software for managing financial data has high
learnability, then it will be easier for end-users to learn to use it and to remember how to use it. If the software has low
learnability then it will be less easy for end-users to learn to use it and to remember how to use it

Reliability of software associated with an architecture is the extent to which it functions as intended by its designers. E.g.,
if the software for managing financial data is more reliable, its behavior is more consistent and its up time for end-users is
high. If the software is less reliable, its behavior is less consistent and up time for end-users is low

Response time of software associated with an architecture measures how quickly the software responds to the end-user.
E.g., if the software for managing financial data has a faster response time, then it will respond faster to the end-users. If

the software has slower response time, then it will respond slower to end-users

Next, we describe how we refined external SQ into a
list of factors, and the research methodology used to
study their relative weights.

3. Identification of factors in the study

Any or all of the factors in Table 1 can conceivably
affect the perception of SQ in the minds of senior IS
managers. To identify the list of factors that are im-
portant, we adopted the following approach. First, we
conducted an extensive literature review to identify the
factors. Second, we conducted semi-structured inter-
views with randomly selected senior IS managers to
ensure: (a) that we had not omitted any factor that was
important in their decision models, and (b) that we
operationalized the factors in terms that were under-
standable and familiar to the IS managers. We now
describe both of these steps in detail.

After careful discussions between all three researchers
involved in the project, we identified four factors that
mapped reasonably well to those listed in previous lit-
erature. These are the features, > learnability, reliability
and the response time of the software. These four factors
are shown as columns in Table 3. The table provides a
summary of how factors identified in previous literature
map to the four factors we have identified in this work.

We now describe why we have excluded certain fac-
tors that are considered important in previous literature.
Maintainability is frequently referenced as an element of
software quality. Definitions range from error diagnosis,
vendor service, repairs, enhancements, modification,
and updating to satisfy new requirements (Barbacci et
al., 1995; Boehm et al., 1978; Fenton, 1991; IEEE, 1992;

3 While features are not traditionally used when studying internal
SQ, our literature review in Table 3 shows that they have been
considered important in past work, when studying SQ as perceived by
the users (external SQ). Our interviews with the CIOs confirmed that
features should be included when studying SQ from their perspective.

Keller et al., 1990, 1995; QAI, 1989). Expandability and
flexibility are included as elements of maintainability.
We have chosen not to include maintainability in this
study because this factor is inseparably tied with explicit
cost (see Table 2). In (Bajaj, 2000), it was determined
that explicit cost has much less weight than the other
elements of software quality listed above. Furthermore,
in (Kekre et al., 1995), which is the only study apart
from the current one that looks at the relative weights of
different factors on software quality, maintainability was
shown to be less significant than other factors in driving
software quality.

Installability is not included because Kekre et al.
(1995) included it as an explicit factor and found its
weights to be unimportant in their study. Portability is
another frequently referenced factor. This factor refers
to the compatibility of the system to different platforms,
environments, or configurations (Boehm et al., 1978;
Cardenas-Garcia, 1991; Christie, 1994; IEEE, 1992;
Keller et al., 1990). Reusability has some similar char-
acteristics, but also includes the ability to be easily
converted for use in another application (IEEE, 1992;
Keller et al., 1990). Interoperability is another related
factor which refers to the degree to which the software
can casily interface with another system (Keller et al.,
1990). Finally, structuredness is an element of software
quality referring to the organization of interdependent
parts (Boehm et al., 1978). Bajaj (2000) studied com-
patibility, which was composed of the above factors
(portability, reusability, interoperability, and structur-
edness) and determined it to be less important than the
software quality when looking at the evaluation of
computing architectures by senior IS managers.

Once we had identified a list of factors, we arrived at
the definitions in Table 4 as follows. We randomly se-
lected 12 organizations from a database of 232 large
corporations in Pittsburgh, PA. The Chief Information
Officers (CIOs) of seven of the 12 organizations agreed to
be interviewed. In each semi-structured interview, which

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

217
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx 5

lasted approximately 15 min, the CIO was asked to list
the factors that he/she considered important from the
point of view of his/her organization. The interviews
were conducted for two reasons. First, we did not want to
omit any factors considered important by senior IS
managers, nor to include any factors that they consid-
ered irrelevant. Second, we wanted to describe the factors
using terminology that was familiar to the CIOs, since
the subjects in the next phase of the study would also be
senior IS managers. The descriptions of the four factors
in our study were determined by studying the field-notes
of the interviews, previous literature and careful discus-
sions amongst the three researchers involved in the
study. Table 4 lists the factors and their definitions.

It is important to note that we were not seeking sta-
tistical validity when conducting the interviews. Instead,
we were seeking theoretical saturation (Glaser and
Strauss, 1967), a term understood in sociological theory
to mean the gathering of data from subjects until, in the
researchers’ judgment, nothing new will be learned by
gathering more data. None of the (randomly selected)
senior IS managers we interviewed came up with new
factors and they all used reasonably similar terminology
when discussing the factors. In our judgment, inter-
viewing more senior IS managers would have contrib-
uted nothing more towards arriving at the descriptions
of the factors.

Next, we describe the second phase of the study: the
estimation of the relative weights of these factors in the
minds of senior IS managers.

4. The estimation of the relative importance of the factors
constituting external SQ

In this study, we use conjoint analysis (CA), an ex-
perimental design and model building approach widely
applied in marketing to evaluate new products (Green
and Srinivasan, 1978, 1990) but relatively new to IS
research. CA 1is derived from conjoint measurement
theory (Luce and Tukey, 1964) — the study of functional
relationships between multi-attribute stimuli and their
subjective valuation. In CA, subjects directly rank and
evaluate a set of products described by their factors,
where the set of products and their factor levels are
constructed as an orthogonal experimental design. This
evaluation process is similar to real-world decision
making. Then multivariate model estimation; for ex-
ample, regressing product scores on the factor levels,
yields weights for individual factors. In contrast, the
alternative approach of multiattribute utility assessment
requires that subjects directly assess tradeoffs between
pairs of factors in terms of overall outcome or product
utility (Keeney and Raiffa, 1976). Such assessments are
cumbersome and far from the actual processes of deci-
sion makers.

In a typical CA study, the researcher first constructs a
set of hypothetical products (in our case, softwares) by
combining the possible attributes (or factors) at various
levels for each attribute. The hypothetical products are
presented to subjects, who provide an overall evaluation
of each product, relative to the others (usually by giving
each one a score). This corresponds to selection in the
real world, where products are evaluated as a whole. All
the overall scores provided by a subject are then de-
composed, through multivariate estimation, to yield the
relative importance of each of the factors in the decision
model of that subject. Thus, CA yields a decision model
at the individual level. The individual decision models
can be checked for validity, by using a set of holdout
products (products that are evaluated by the subject, but
whose scores are not used to construct the decision
model). The actual scores given by the subject for the
holdout products can be compared with the predicted
scores, to get a measure of the validity of the decision
model.

While forming decision models at the individual level
is powerful, even more powerful is the ability to aggre-
gate these models to form an overall, statistically sig-
nificant decision model for the population being studied,
which we do in this study.

CA is advantageous in that first, subjects have to
consider all attributes jointly (versus considering them in
isolation for most other techniques) which necessitates a
tradeoff between attributes (or factors), which is similar
to real world decision making. Second, the relationship
between attribute levels and the evaluation scores given
by the subject can be non-linear (versus a linear as-
sumption in most other techniques like linear regression
or the analysis of variance). In fact, we can use CA to test
whether the weight of a factor on the dependent variable
(the score) is linear or not. Third, an individual decision
model is created for each subject (versus merely collecting
one data point for each subject) allowing the detection of
inconsistent decision making in a subject. Fourth, all
previous studies in the area, to the best of our knowledge,
are post-hoc, which means that the users have to actually
adopt and use a particular software and then evaluate it.
Using post-hoc methods, it becomes harder to find users
who have used the same software, and to also ensure
random selection and other statistical controls. Fur-
thermore, users in post-hoc studies may be biased for
example, in supporting their decisions, rather than can-
didly evaluating products. In CA, since hypothetical
products are used, subjects can be randomly selected and
administered the same study, ensuring they evaluate the
same products. CA thus allows for the generation of
more valid decision models. In CA, it is important that
the hypothetical products be believable, that the attri-
butes be reasonably non-overlapping, and that the at-
tributes each have approximately the same number of
levels (Wittink et al., 1990). Since CA is a methodology

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

296
297
298
299
300

301
302

303
304
305
306
307
308
309
310
311
312

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

6 B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx

that is fairly novel to IS research, a more detailed de-
scription of CA, and issues such as hypothesis formula-
tion and sample size are discussed in Appendix D.

The steps we followed in the CA study are outlined in
Fig. 1. Next, we describe each of these steps in detail.

4.1. Identification of factors and creation of the study
packet

After selecting the factors to describe software, which
are shown in Table 4, the next step was to specify levels
for each factor. In all cases, the levels chosen were high,
medium and low, except for the features factor, which
was either sufficient or insufficient. If we had used high,
medium and low for features then both high and low
features would have had negative connotations, since
low would imply too few and high would imply too
many (a features explosion). We constructed the fol-
lowing additive decision model for each subject:

Software evaluation score
= Features weight + Learnability weight
+ Reliability weight + Response time weight. (1)

The next step was to generate the orthogonal set of
hypothetical softwares that would be evaluated by each
subject to allow us to get the relative importance of each
factor. The well known SPSS statistical package was
used to generate the hypothetical softwares. Nine hy-
pothetical softwares, each characterized by one level for
each of the four factors were generated. In addition, we
also generated four holdout softwares, to test the inter-
nal validity of the responses of each subject. Thus, each
subject would be given the same 13 softwares. The 13
softwares are shown in Appendix A. An examination of
the softwares indicates that none of the hypothetical
softwares that are used are unrealistic in the real world,
i.e., it is possible to imagine these softwares existing in
the real world.

The third step was to operationalize the factors. Each
subject was administered the study by the same re-
searcher in person, and reliability and validity controls

1. Identify factors important in the decision space of IS managers when
evaluating software used in their organization.

2. Select appropriate levels for each factor (attribute).
3. Operationalize each factor in a manner suitable for a face-to-face study.

4. Create study packet and pilot test for clarity of measures, time taken for one study,
any other implementation problems or possible biases.

5. Select subjects.
6. Administer the study to each subject individually, in the presence of the researcher.

7. Analyze data, come up with individual decision models for each subject, as well as
an aggregate decision model across the sample, and present results.

Fig. 1. List of steps that would constitute a CA study in IS.

were implemented on site. Because of this, a richer op-
erationalization of factors is possible here, than with a
mail-out survey, where all the controls are part of the
survey, since no verbal interchange can result between
the researcher and the subject. For each factor we gave
the definition and a reason why the factor was impor-
tant. The reasons were carefully kept moderate, so as
not to bias the subjects in favor of any factor. The idea
behind the reasons was to simply highlight to the subject
the effects of the extreme levels of each factor, and to
achieve a relatively uniform semantic range amongst the
subjects about what each factor meant. Table 4 lists the
definitions and the reasons.

The fourth step was the construction and pilot testing
of the study packet that would be used in the actual
study. The 13 softwares were printed on separate cards,
of identical length, breadth and thickness. We pilot
tested the study with three doctoral students with high,
moderate and low IS experiences, respectively. Based on
the feedback, we made the following changes in the
packet. Since the order of appearance of a factor on a
card was important, we created four different study
packets. Across the study packets, each factor showed
up first in all the cards of one packet, second in all the
cards of another packet, etc. Of course, the same 13
softwares were presented in each packet; only the order
of factors describing each software on a card was
changed across the four packets. The cards would be
shuffled before being handed out to each subject, and
the cards were titled from A-M, with the explicit men-
tion to the subjects that the alphabets were chosen at
random. Finally, the presentation (font size, etc.) on
each card was identical. We also ensured that the op-
erationalization of each factor was easily understood by
all three pilot study subjects. Minor modifications were
made based on insights gained from the pilot test. One
final study packet (out of four) is shown in Appendix B.

We now describe how we ensured reliability and
construct validity with each subject in the actual CA
study. Each study was conducted with one subject, in
the presence of the same researcher. The instructions in
the packet asked the subject to read the descriptions of
the factors. The next step in the study was for the re-
searcher to answer any questions the subject may have
regarding the descriptions of the factors, and to ensure
that the subject had an understanding of how each
factor was different from the other. This dialogue with
the subjects was necessary to ensure that all subjects had
a similar understanding of the four factors. At this stage,
they were also asked if, in their opinions, any important
factors had been omitted. This was an added, informal
check on whether our factors were complete. * Once the
researcher was satisfied that the subject had a good

4 All of the subjects in the study, described next, indicated that the
four factors covered their decision space.

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

385
386
387
388
389
390
391
392
393
394
395
396

397

398
399
400
401
402
403
404
405
406
407
408
409
410

411

412
413
414
415
416
417
418
419
420
421
422
423

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx 7

Table 5
Response details of firms contacted

Agreed to Contacted but Declined to Total number of

study did not return participate organizations
calls contacted

24 9 11 44

understanding of the different factors, the subject was
asked to rank order the cards in descending order of
preference. No time limit was to be set for the ranking,
and it typically was expected to take between 20 and 30
min to perform the ranking. Once the cards were rank
ordered, the subject was to give a score of 100 to the
highest card, and one to the lowest card. The remaining
cards would each be given any score, as long as a strict
order was maintained. These scores would be the (met-
ric) dependent variable in the study, and would repre-
sent the evaluation score of the software shown on that
particular card, by the subject, for their organization.

4.2. Subjects for the study

The population for our study consisted of a database
of 232 firms ° located in Pittsburgh, PA. We selected a
random sample of 44 corporations from this population,
and identified the CIO or senior IS manager in each
corporation. We made sure that these managers were
decision-makers in terms of making significant new in-
vestments in IS within the organization. The CIOs were
contacted, and 24 agreed to participate in the study. The
details of the response rate (55%) are shown in Table 5.

The demographics of the 24 senior IS managers who
participated in the final study are shown in Table 6. The
table indicates the wide variety of organizations repre-
sented in the random sample.

4.3. Data analysis

In our case the dependent and independent constructs
were metric. Hence, we used dummy variable (categor-
ical variable) regression analysis (using the well known
Excel package) to estimate a part-worth model for each
subject (each IS manager). Internal validity in a CA study
translates to whether each subject’s decision model
represents a consistent logic or not. Internal validity of
each individual subject’s model was tested based on the
holdout sample of four observations for each subject.
The Wilcoxon rank test ® (Wonnacott and Wonnacott,
1984, pp. 472) was used for this. The test ranks predicted
values and actual values and then answers the question:

5 Each corporation in this database has over 250 employees.

% An analysis of variance could not be used, since the number of
observations in the holdout sample is small (four observations each). A
larger holdout sample, which could have cognitively overloaded the
subjects, thus leading to serious biases in their responses.

are the two populations significantly different from each
other? In all 24 cases, the IS managers had valid internal
decision models.

Based on the dummy variable coding scheme for the
nine softwares (as represented by the factors) we used,
the part-worth estimates are on a common scale. Hence,
the overall relative importance of each independent
factor for a subject can be easily computed by looking at
the range of part-worths across the levels of that factor.

4.4. Results

The expected relative part-worth of each factor is
25% (since there are four factors, occupying 100% of the
subjects’ decision space). We use two metrics to present
the results. The first metric is the mean relative part-
worths of each of the four factors, and the confidence
intervals of these means. This metric is equivalent to
testing a null hypothesis that all four factors have an
equal weight in the minds of the senior IS managers.
Since the mean part-worth can be biased by extreme
values in the sample, we use a second metric, which gives
the percentage of subjects in the sample that indicated a
higher than the expected 25% relative part-worth for
each of the four factors. Table 7 shows the mean relative
part-worths and confidence intervals for each factor (the
first metric). It also depicts the percentage of subjects in
whose decision model the factor had a part-worth over
the expected 25% (the second metric). In addition, Table
7 lists the direction of influence in the cases that were
significant and the linearity of effect of the factor on the
dependent variable (the scores). Note that to estimate
linearity, at least three levels are needed, so the features
factor’s linearity of effect cannot be estimated. The data
and figures used for the results are in Appendix C.

From Table 7, it is clear that reliability has the
highest mean relative worth of any factor. Its confidence
interval does not overlap any of the other factors, thus
disproving the null hypothesis. Using the second metric
also, it is clear that reliability is the most preferred.
Nineteen of the 24 participants (79%) gave this factor
greater than expected weight (25%).

Response time appears to be the next most important
factor, though its confidence intervals overlap with
features and learnability. On the second metric as well,
response time is second to reliability. Learnability and
features are the least important, being approximately
equal on the first metric, and with features being more
important than learnability on the second metric.

All four factors have an (expected) positive slope
(implying that more is preferable to less), and a linear
slope where the number of levels is greater than two.
The linearity finding in our study implies that future
research using these factors can assume a linear effect of
these factors on software evaluation.

424
425
426
427
428
429
430
431
432

433

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

477

478
479
480
481
482
483
484
485
486
487
488

N
JSS 7268 ARTICLE IN PRESS
DISK / 26/9/01
8 B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx
Table 6

Demographics of IS managers who participated

No. of pages: 17

DTD 4.2.0/ SPS

Subject no. Number of Years of Education Gender Environment most comfortable SIC (Standard Indus-
machines experience managing trial Classification)*
1 400 10 HS M Client/server 3312; 3356
2 1200 6 BS F Fully distributed, client/server 13;49
3 600 15 BS M Client/server 5141; 5411
4 40 25 BS F Client/server, mainframe 3312;3462;3643
5 1200 10 BS M Fully distributed, client/server 99
6 2 23 AA F Mainframe, client/server 2751;2262;2641
7 75 10 AA M Mainframe 2821
8 500 6 MS M Client/server 3845
9 300 35 AA M Mainframe 3312; 5812
10 2000 24 BA M Mainframe 4923
11 100 15 BS M Mainframe 3621
12 220 15 AA M Client/server 3444;8711;8748
13 200 11 BS M Client/server 2821
14 735 28 BS M Mainframe, client/server 99
15 400 1 BS M Client/server 2711;2752
16 350 10 BS M Intranet 3679
17 23,000 20 BA M Mainframe, client/server, fully dis- 6025
tributed, intranet
18 650 30 MS M Mainframe, client/server 3255
19 125 24 AA M Client/server 3317; 3499
20 110 3 AA M Client/server 3325
21 200 30 BS M Fully distributed 3317
22 100 11 BS M Mainframe, client/server 5051
23 250 30 BS M Client/server 99
24 35 8 BA M Client/server 89

#This information is shown to demonstrate that our sample set was indeed varied. The 20 architectures in the study were all hypothetical, and this

was explained to the IS managers.

Table 7
Summary of results for each factor across the sample

Features Learnability Reliability Response time
Mean 15.10 14.60 46.82 23.47
Confidence interval (95.0%)* 9.57-20.63 9.24-19.96 39.12-54.52 15.96-30.98
Percentage of respondents who considered 25% 79% 38%
significant®
Direction of slope® Positive Positive Positive Positive
Linearity of slope? NA Linear Linear Linear

#Degrees of freedom = 20.

°This is the percentage of subjects for whom the relative part-worth was >25% for this factor.
“This is the direction of the slope of the line only for those subjects for whom the factor had a relative part-worth >25%.

40nly for those subjects for whom the factor’s relative part-worth >25%.

4.5. Discussion

The surprising finding in our study is that features
and learnability, which have been found to be most
important in earlier studies (Kekre et al., 1995), are
considered much less important for the software used in
large organizations today, at least by senior IS managers
who have several years experience with implementing
systems and dealing with end-user issues. Our study
shows that the factor that is dominant in their decision
models today is reliability, followed by response time.
These findings have implications for IS theory, for IS
curricula and for IS practice.

In IS theory, this is the second work, to the best of
our knowledge, that examines the relative weights of
the factors that make up software quality of off-the-
shelf software. The earlier study (Kekre et al., 1995)
found that, once an acceptable level of reliability was
achieved, the feature set (capability) was a strong fac-
tor, along with the learnability and memorability (both
called usability) of the software. Another factor that
was found to have reasonably strong influence was the
response time of the software (performance). Our re-
sults indicate that the nature of software has changed
since the time of the study by (Kekre et al., 1995).
Learnability and feature set, which were found to be

489
490
491
492
493
494
495
496
497
498
499
500
501

502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx 9

the primary drivers there are no longer important. The
reliability 7 of the software is of primary concern to
end-users. This result is intuitively supported by the
changing nature of software. Thus, today, almost all
software is increasingly graphical user interface (GUI)
based, with extensive on-line help availability, and with
a multitude of features, often many more than are re-
quired. With software of this type being used increas-
ingly, it appears that learnability and features are not
important in the minds of the consumers of this soft-
ware. Our study indicates that software used in large
organizations has evolved to the point where it is, in
general, rich enough in features and easy enough to
learn and remember to use, but still lacking compara-
tively in reliability. Essentially, combining our findings
with (Kekre et al., 1995) indicates that user’s percep-
tions about software change over time. A second con-
tribution to IS theory is that, to the best of our
knowledge, this is the first work that uses conjoint
scaling and analysis for analyzing the trade-offs re-
garding software quality. The methodology we use is
replicable and can potentially allow for findings across
multiple studies. A third contribution is the finding that
the effects of all factors in the study (with more than
two levels) is linear, which gives future research studies
justification for making a linearity assumption when
modeling the effects of these factors, and allowing the
use of statistical techniques like linear regression.

The findings of this study provide directions for the
design of future IS curricula. The high importance of
reliability indicates a clear need in the IS and computer
science curricula for more courses that teach both the
theoretical aspects of software reliability e.g., (Best et
al., 2000; Perry et al., 2000), as well as practical methods
to create reliable software e.g., (Bachmann et al., 2000).
These courses should be in addition to the typical soft-
ware engineering courses already taught in most cur-
ricula.

Our findings are also important for IS practice. First,
our findings indicate that developers of off-the-shelf
software used in corporations will gain more competi-
tive advantage by focusing on improving the reliability
of their software, than by improving the learnability of
or the number of features in their software, given cur-
rently used software as a baseline. This also holds true
for IS consulting firms, who have a software or a turn-
key solution as a deliverable to their clients. Second,
building on the results of an earlier study by (Bajaj,
2000), the findings of this study clearly point out po-
tential avenues of competitive advantage for proponents
of new computing architectures, such as the network
computer architecture. External software quality is the
most important factor in the decision models of senior

7 Recall that reliability is the extent to which the software behaves as
intended by its designers.

IS managers when evaluating computing architectures,
and the reliability of software is the area to focus on if a
higher evaluation of an architecture is desired by its
proponents. For example, proponents of the network
computer architecture would be best served if they fo-
cused on improving the comparative reliability of the
software that is developed on the architecture versus
software available on existing architectures like the cli-
ent/server architecture (assuming that the learnability
and feature set are comparable). The secondary impor-
tance of response time in our study implies that network
latencies and other causes of poor response time are also
areas to concentrate on, in order to improve evalua-
tions. Third, the findings here have implications for re-
searchers in the area of software reliability as well. While
software reliability has been extensively studied in lit-
erature e.g., (Goel, 1985), there is a clear need for re-
searchers to communicate this research to industry,
where off-the-shelf software is built and used by the
subjects of our study. Thus, methodologies like the ar-
chitecture based design method (Bachmann et al., 2000),
that lay down practical rules that project managers can
follow to engineer reliability at the design phase itself,
are a step in the right direction.

4.6. Limitations

The methodology used in this study has limitations.
The face-to-face method of data collection used in our
study allows for a richer operationalization of each factor
(see Appendix B) than is allowed in a mail-out survey,
since it is possible to clarify issues related to the study to
subjects at the time of administration. However, by the
same token, the method is highly researcher-dependent,
and the potential to bias subjects one way or another is
certainly higher than with a mail-out survey, where
subjects do not see the researcher. Second, a richer op-
erationalization allows us to consider more realistic
factors, but the construct validity is harder to quantify, as
opposed to standard techniques like the Cronbach alpha
which are available for Likert scale type questions used
in mail-out surveys, that are more traditional in IS re-
search.

5. Conclusion

In this work, we used previous literature to refine the
external SQ (i.e., the quality from the point of view of
the users of the software) of software used in large or-
ganizations, into a set of four factors. We interviewed
senior IS managers of seven randomly selected large
corporations to operationalize the factors in terms fa-
miliar to the managers. Next, we conducted a face to
face conjoint analytic study, using an additive model, to
evaluate the individual decision models of senior IS

555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

579

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

596

597
598
599
600
601
602
603
604
605

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636

637

638

639
640

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

10 B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx

managers of 24 randomly selected corporations. After
testing each of these models for internal validity, using a
holdout sample, we aggregated these models to test the
null hypothesis that the relative weight (part-worth) of
each of the four factors in a population level decision
model is equal. The null hypothesis was disproved for
the reliability factor, clearly indicating that it is domi-
nant in the decision model of the population, with the
response time factor being of secondary importance.
These findings contradict those of studies conducted
earlier, where the learnability factor and the feature set
factor was most important. The findings in our study
indicate that the nature of software used in corporations
has changed, and that software developers and con-
sulting firms should focus on methods of developing
reliable solutions. Designers of IS curricula should al-
locate resources towards developing courses on reli-
ability evaluation, and researchers in the area of
software reliability need to communicate their knowl-
edge to industry.

In terms of future research, the results of this study
clearly point to the construction of reliability benchmarks
for end-user software as well as all the software it rests
on (such as operating systems and database manage-
ment systems). Thus, benchmarks may be made for end-
user software such as word-processors, spreadsheets and
e-mail packages, as well as for operating systems and
database management systems. This will give IS man-
agers more information that is important to their eval-
uation of both software as well as computing
architectures for their organization.

Acknowledgements
The authors thank Dr. Steve Cross, Director of the

Software Engineering Institute, Carnegie Mellon Uni-
versity, the editor-in-chief as well as anonymous re-

Table 8
List of hypothetical architectures (information from each of the cards)

viewers, all of whose comments greatly improved the
quality of this paper.

Appendix A

See Table 8.

Appendix B. Copy of study packet

Directions

Thank you for participating in our study. Your co-
operation is greatly appreciated and crucial to the suc-
cess of this study.

Please be sure to answer all of the questions as your
responses will only be useful if they are complete.

The results of this study will indicate which elements
of software quality are usually considered by IS man-
agers, like yourself, when making decisions regarding
significant new computer purchases. The results will
likely be interesting to IS managers like yourself. A
complimentary copy will be mailed to you, once the
study is completed.

Your responses will be kept confidential, and avail-
able only to the researchers actually conducting the
study. Please feel free to call me at any time if you have
any questions.

Bonnie Brinton Anderson,

Heinz School of Public Policy and Management,
Carnegie Mellon University,

4800 Forbes Avenue,

Pittsburgh, PA 15213.
bbrinton@andrew.cmu.edu

(412) 268-1415

Architecture Features Learnability Reliability Response time
A Less Medium Medium Average
B Sufficient Medium High Slow

C Sufficient Low Medium Fast

D Sufficient High Low Average
E Less Medium Low Fast

F Less High Medium Slow

G Less Low Low Slow

H Less High High Fast

I Less Low High Average
J Less Low High Slow

K Sufficient Low High Average
L Sufficient Low High Slow

M Less High Low Slow

The 13 hypothetical computing architectures (9 for the orthogonal set and 4 holdout) generated by SPSS.

641
642

643

644

645

646

647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

663
664
665
666
667
668
669

670

673
674
675
676
677
678
679
680

683

685

687
688
689
690
691
692
693
694
695

696
697
698

699
700
701

702
703

704
705

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx 11

Demographic information

Name:

Organizational Address:
Organizational Position and Duties:
Numbers of Machines Managed:
Years of Experience in the IS Area:
Highest Educational Degree:

Which best describes the computing environment you
feel most comfortable managing (circle one, please):
Mainframe-based systems
Client server systems
Intranet-based systems
Fully distributed systems

Please read the following information carefully in
order to understand the study.

This study looks at what software quality factors IS
managers, like yourself, consider when selecting com-
puting architectures for your organization. There are
several computing architectures that are available. Ex-
amples of computing architectures include the follow-
ing:

e mainframe systems with terminals,

e client server systems (client and server machines di-
viding up the processing),

o the proposed architecture of diskless network com-
puters running off an intranet server, and

o a fully networked architecture where each machine is

a server by itself, and communicates with every other

machine.

A computing architecture consists of both hardware
and software. A shift to another architecture can have a
profound effect on how organizations perform their
business.

In this study, we will assume that the quality of the
general software associated with a computing architec-
ture is completely described by the following factors:

1. Features of a software support what end-users do
with the software. E.g., there is a certain set of core
tasks that end-users do with financial data, and soft-
ware for managing this would have features that sup-
port these core tasks. If a software has less features
then some core tasks will not be supported. If a soft-
ware has sufficient features, then all core tasks will be
supported. In this study, the software associated with
a computing architecture can have less features or
sufficient features.

2. Learnability of a software measures how easy it is for
end-users to learn to use the software and to remem-
ber how to use the software. E.g., if a software for
managing financial data has higher learnability, then
it will be easier for end-users to learn to use it and to
remember how to use it. If the software has lower
learnability, then it will be less easy for end-users to
learn to use it and to remember how to use it. In this
study, the learnability of the software associated with
a computing architecture can be high, medium, and
low.

3. Reliability of a software is the extent to which it func-
tions as intended by its designers. E.g., if a software
for managing financial data is more reliable, its be-
havior is more consistent and its up-time for end-us-
ers is higher. If the software is less reliable, its
behavior is less consistent and up-time for end-users
is lower. In this study, the reliability of the software
associated with a computing architecture can be high,
medium or low.

4. Response time of a software measures how quickly
the software responds to the end-user. E.g., if a soft-
ware for managing financial data has a faster re-
sponse time, then it will respond faster to the end-
users. If the software has slower response time, then
it will respond slower to end-users. In this study,
the response time of the software associated with a
computing architecture can be fast, average, or slow.
You will now be presented with descriptions of

software associated with 13 different computing archi-
tectures. These architectures do not have names, but are
arbitrarily labeled from A to M. The software quality of
each computing architecture will be completely de-
scribed by the four factors we have discussed. We would
like you, as a senior IS manager, to do the following:

o Please sort these 13 architectures (on the 13 different
cards) in descending order of preference (from most
preferred on the top of the pile to least preferred at
the bottom).

e After you have sorted the cards, please write a num-
ber on each card that gives a numerical value to your
preference, from 1-100. The least preferred architec-
ture (at the bottom of the pile) will be given a score
of 1, while the most preferred architecture will be gi-
ven a score of 100. The cards in between should be gi-
ven a preference score between 1 and 100. Each card
should have a preference score lower than the card
below it. However, the scores need not be spaced
equally. It is entirely up to you to choose the score
you wish to give each architecture. Note that the en-
tire architecture should be given one preference score,
based on how appealing it is to you.

Also, in case you change your preferences, you may
reorder the cards in the heap at any time during the
study. If you do alter the order, please make sure you
alter the preference scores as well, i.e. the preference

706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

742
743
744

746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

762
763
764
765
766
767
768
769
770
771

773

774

775

776

777
778
779
780
781
782
783
784
785
786

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

12 B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx

score of every card is still between the scores of the cards
above and below it.

Since we shall be re-using the cards, please use the
pencil provided to write on the cards. All the factors
discussed earlier have been summarized on a single sheet
for your convenience. Please feel free to refer to this.
Below is an example of one CA on a card. In all, the
packet had 13 cards, one for each CA. This packet is one
of four packets. The other packets list the factors in a
different order.

Architecture A
Features: Less

Learnability: Medium
Reliability: Medium

Response time: Average

Appendix C

See Tables 9-11, and also see Figs. 2-5.

Appendix D
D.1. Developing a CA based methodology for IS studies

CA is related to traditional experimentation, in which
the effects of levels of independent variables are deter-
mined on a dependent variable. E.g., the effects of
temperature and pressure on the density of soap in a
soap manufacturing process. In situations involving
human behavior, such as in IS, we want to also deter-
mine the effects of levels of certain variables (equivalent
to independent variables) on the dependent variable,
which is often an overall rating or a purchase decision.
However, the “independent variables” in human be-

Table 9
Dummy variable coding of architectures

havior studies are often weakly measured or qualita-
tively specified (Green and Srinivasan, 1978). An
example in IS would be whether a system is decentral-
ized or centralized, and the effect of this variable on an
overall evaluation (the dependent variable).

The basic model in a CA study is:

Y1 (metric or non-metric) =X, +Xo + X5+ - -
+ X, (non-metric)

(Metric refers to an interval or ratio scale, while non-
metric refers to a nominal or ordinal scale.)

The main advantages of CA from a statistical per-
spective, are its ability to accommodate metric or non-
metric dependent variables, its ability to use non-metric
variables as predictors and the quite general assump-
tions about the relationships of the independent vari-
ables with the dependent variable (e.g., no linearity
assumptions are made) (Hair, 1992). A CA study has
two main objectives. First, to determine the contribu-
tions of various predictor variables (also called attri-
butes) and their respective values (or levels) to the
dependent variable (usually an overall evaluation of a
product or concept), and second, to establish a predic-
tive model for new combinations of values taken from
the predictor variables.

CA is based on the premise that subjects evaluate the
value or utility of a product/service/idea (real or hypo-
thetical) by combining the separate amounts of utility
provided by each attribute. CA is a decompositional
technique, because a subject’s overall evaluation is de-
composed to give utilities for each predictor variable,
and indeed for each level of a predictor variable. The
overall relative utility for each predictor variable or at-
tribute is called the part-worth of that attribute. CA is
common in behavioral studies (Luce and Tukey, 1964)
and in marketing studies (Green and Rao, 1971), where
the predictor variables are often called attributes, and
the dependent variable is often an overall evaluation of a
product.

Architecture Features Learnability Learnability Reliability Reliability high Response time Response time
sufficient medium high medium average fast
A 0 1 0 1 0 1 0
B 1 1 0 0 1 0 0
C 1 0 0 1 0 0 1
D 1 0 1 0 0 1 0
E 0 1 0 0 0 0 1
F 0 0 1 1 0 0 0
G 0 0 0 0 0 0 0
H 0 0 1 0 1 0 1
1 0 0 0 0 1 1 0
J 0 0 0 0 1 0 0
K 1 0 0 0 1 1 0
L 1 0 0 0 1 0 0
M 0 0 1 0 0 0 0

787
788
789
790
791
792

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

824
825
826
827
828

JSS 7268 ARTICLE IN PRESS No. of pages: 17
DISK / 26/9/01 DTD 4.2.0/ SPS
B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx 13
Table 10
Dummy variable coefficients for each participant
Participant FL FS LL LM LH REL REM REH RTL RTM RTH
1 0 8.67 0 5.67 9.00 0 34.67 72.00 0 3.67 8.00
2 0 —-0.17 0 6.33 8.00 0 28.00 71.33 0 9.67 19.67
3 0 10.67 0 6.33 6.33 0 34.67 78.00 0 8.00 14.67
4 0 4.17 0 14.67 14.00 0 35.33 70.33 0 9.00 14.67
5 0 11.50 0 8.00 18.00 0 29.67 71.33 0 1.33 9.67
6 0 16.17 0 8.00 -2.33 0 23.33 63.33 0 -12.33 -2.00
7 0 11.50 0 12.67 9.33 0 29.67 59.33 0 6.67 12.33
8 0 10.17 0 -7.67 1.33 0 27.00 68.67 0 9.67 29.00
9 0 20.17 0 4.67 14.00 0 30.67 63.00 0 3.67 22.00
10 0 22.00 0 8.33 11.67 0 36.00 48.00 0 9.67 9.33
11 0 12.00 0 15.67 18.33 0 35.00 55.00 0 14.33 25.67
12 0 15.50 0 -12.67 -9.33 0 23.67 56.33 0 18.00 32.00
13 0 26.50 0 0.33 —-13.33 0 30.33 53.67 0 3.33 18.67
14 0 1.67 0 5.67 18.00 0 33.00 45.67 0 15.33 35.33
15 0 -1.00 0 34.67 46.33 0 49.67 36.33 0 4.67 16.33
16 0 35.00 0 7.67 —-8.67 0 28.33 51.67 0 -12.00 6.00
17 0 8.67 0 -13.67 16.67 0 23.33 49.67 0 19.33 32.67
18 0 35.00 0 5.67 5.33 0 26.67 42.33 0 12.67 41.33
19 0 45.67 0 9.67 8.00 0 26.33 36.33 0 3.00 4.67
20 0 44.50 0 -10.67 —-14.33 0 32.33 27.67 0 6.33 19.67
21 0 -0.33 0 2.67 2.00 0 12.33 23.33 0 39.00 73.67
22 0 2.33 0 4.67 —-0.33 0 13.00 21.33 0 46.33 78.00
23 0 1.67 0 24.00 63.67 0 -2.33 17.00 0 2.33 18.33
24 0 39.17 0 -13.67 9.33 0 10.67 7.00 0 19.00 52.67

Several works highlight CA in detail (Hair, 1992;
Luce and Tukey, 1964; Wittink et al., 1990). Without
substituting for them in any way, we present a simple
description here of the essential concepts in a CA study.
For a CA study, a product class is considered, along with

Table 11
Relative part-worths for each subject
Participant Features Learnability Reliability = Response
time
1 8.87 9.22 73.72 8.19
2 0.17 8.07 71.93 19.83
3 9.73 5.78 71.12 13.37
4 4.01 14.13 67.74 14.13
5 10.41 16.29 64.56 8.75
6 15.82 10.11 61.99 12.07
7 12.00 13.22 61.91 12.87
8 8.70 7.70 58.77 24.82
9 16.92 11.75 52.87 18.46
10 24.09 12.77 52.55 10.58
11 10.81 16.52 49.55 23.12
12 13.30 10.87 48.35 27.47
13 23.56 12.15 47.70 16.59
14 1.66 17.88 45.36 35.10
15 0.88 40.88 43.82 14.41
16 28.93 13.50 42.70 14.88
17 2143 13.23 39.42 25.93
18 47.40 10.03 37.72 4.84
19 28.15 4.56 34.05 33.24
20 40.15 12.93 29.17 17.74
21 0.33 2.67 23.33 73.67
22 2.19 4.69 20.00 73.13
23 1.66 63.25 16.89 18.21
24 31.21 18.33 8.50 41.97

a set of subjects who would evaluate products in that
class. A set of attributes (predictor variables) is selected
to describe the product class. The possible levels of each
attribute are selected. A product in the product class is
then simply a combination of attribute levels (one level
per attribute).

The method of data collection in the CA study can be
face-to-face, which is more time consuming, but allows
for a richer operationalization of each attribute, or by
mail, which allows for greater reach of subjects but
permits leaner operationalizations in the interests of
validity. A face-to-face data collection method, such as
used in the current study, represents potentially a happy
medium between a case study (where the operational-
ization is very rich but validity is often criticized) and a
simple Likert scale survey questionnaire, where the op-
erationalization is very lean, though validity is quanti-
fiable, using techniques like factor analysis and
Cronbach’s alpha (Nunnally, 1978). The method of data
analysis depends on whether the dependent variable is
metric (in which case categorical variable regression can
be used) or non-metric (in which case logistic regression
or discriminant analysis can be used). A further choice
facing the researchers is the composition rule to be used:
additive or with interactive effects. For most situations
where a predictive model is desired, and where the at-
tributes involve less emotional or aesthetic judgments
and are tangible (as is reasonable to assume in IS) an
additive model is usually sufficient (Hair, 1992).

From an application perspective, the CA methodol-
ogy has several advantages. First, it permits the con-

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

860
861
862
863
864
865

JSS 7268

DISK / 26/9/01

Dummy Variable Coefficients for Low, Medium and High Reliability

90 ~

80

70

60

50

40

30

20

No. of pages: 17
DTD 4.2.0/ SPS

ARTICLE IN PRESS

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx

Slopes for Reliability for Each IS Manager

Managers

Fig. 2. Dummy variable coefficients for reliability.

struction of utility models in application areas where the
predictor variables are often weakly quantifiable, as in
the case of studies involving perceptions, which are
commonplace in IS research.

Second, a CA study allows for a more realistic overall
decision model for a population, because it forces sub-

jects to evaluate the products as a whole (as in real life).
It forms individual decision models for each subject,
that can be tested for internal validity by using a hold
out sample (a set of products in the product class whose
predicted evaluations are compared with the subject’s
actual evaluations); and it allows the formation of an

Slopes for Response Time for Each IS Manager

90

80

70

60

50

40

. [, ¢

Dummy Variable Coefficients for Slow, Average and Fast Response Time

-20 4

Managers

Fig. 3. Dummy variable coefficients for response time.

866
867
868
869
870
871

JSS 7268 ARTICLE IN PRESS No. of pages: 17

DISK / 26/9/01 DTD 4.2.0/ SPS

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx 15

Slopes for Features for Each IS Manager

50 ~
40
é) lT lT ’I
; 10 L 3 hd I) SN ? T
éo[ﬁjfjljjlljjlzalAl lﬁzzl
3
2 -10
g -20 l
-30
240 4
Managers
Fig. 4. Dummy variable coefficients for features.
872 aggregate decision model across all the subjects, and Third, CA makes no assumptions about the nature of 8§76
873 permits the statistical testing of the null hypothesis that the relationships between the attributes and the depen- 877
874 all the attributes have an equal utility in the aggregate dent variable. This makes it very useful when exploring 878
875 decision model. unknown variables as potential predictors. 879

Slopes for Learnability for Each IS Manager

70 -

60

50

40 i
m |

Dummy Variable Coefficients for Low, Medium and High Learnability

20 4

Managers

Fig. 5. Dummy variable coefficients for learnability.

880
881

882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919

920
921
922
923
924
925
926
927
928
929
930
931
932

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

16 B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx

D.2. Operationalizing and selecting levels and scales for
the predictor variables (Atributes)

The responses in a CA study are very dependent on
the way the attributes and the scales (the number of
levels and the range of the levels for an attribute) are
presented to the subjects. If attributes are chosen that
are prima facie known to be of less importance than
others, then that will certainly affect the outcome. So, if
we know before hand that, let us say, Reliability, as
defined and scaled for the subjects is not likely to be as
important as, let us say, Learnability, as defined and
scaled, then that is probably what the outcome will be.
What is needed in a study that secks to assess relative
part-worths of each attribute, is to operationalize the
attributes (which are qualitative concepts) in such a way
that their importance for the subjects are prima facie the
same, as they are presented and scaled in the study. This
will allow the study to be conducted as a classical hy-
pothesis test, with the null hypothesis being that the
relative part-worths of all attributes (predictor variables)
as they are scaled, are equal.

Another issue with operationalization deals with
construct validity: i.e., first, do all the subjects have a
reasonably consistent idea of each attribute and its
scaling, and, second, is this idea the same as what the
researchers think it is. So a faulty operationalization
will leave different subjects interpreting the constructs
(or attributes) differently, while a better operational-
ization will mean that different subjects view the at-
tributes and their scales in the same way.

One way to ensure construct validity and allow re-
alistic scaling, is to ask a sample in the subject popula-
tion itself to define the predictor variables. This
technique allows the researcher to define the predictor
variables (attributes) in a manner uniformly under-
standable to the subjects, and to also identify realistic
end-points of the scales used for the attribute levels. This
has been done in this study.

D.3. Hypothesis testing and sample size issues in a CA
study

As mentioned in Section D.2, the CA study can be
constructed as a classical hypothesis test, with the null
hypothesis being that the part-worths of all the attri-
butes are equal. In order to test such a hypothesis, we
proceed as follows. First, individual decision models
for each subject in the sample are constructed. These
individual decision models give the part-worths of each
attribute, for each subject. In this study, Section 4 in
Appendix C shows this information. Once the part-
worths of each subject in the sample are obtained, they
can be aggregated to get a mean part-worth for each
factor, for the sample. The mean value and the vari-
ance are then sufficient to statistically test the null

hypothesis. The regular caveats of using too large a
sample size apply. Thus, several basic statistical text
books on hypothesis testing e.g., (Wonnacott and
Wonnacott, 1984) caution against using too large a
sample size, because that would indicate statistical va-
lidity for even small differences in means; differences
that may not be actually significant for the situation
under study. The sample size ® is closely related to the
degrees of freedom in the test, and a small sample size
indicates fewer degrees of freedom, leading to a wider
confidence interval. Thus, statistical validity from a
smaller sample size (as long as the sample is random) is
a good indicator that some real differences in the
means have been found. In this study, we use a sample
size of 23, and obtain statistically valid differences be-
tween some of the means (thus disproving the null
hypothesis of our study).

The steps to be used in a CA study for an IS are
summarized in Fig. 1.

References

Bachmann, F., Bass, L., Chastek, G., Donohoe, P., Peruzzi, F., 2000.
The Architecture Based Design Method, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, CMU/SEI-2000-
TR-001.

Bajaj, A., 2000. A study of senior information systems managers
decision models in adopting new computing architectures. Journal
of the Association of Information Systems 1 (4).

Barbacci, M.R., Klein, M.H., Longstaff, T.H., Weinstock, C.B., 1995.
Quality attributes. SEI, Carnegie Mellon University, Pittsburgh,
CMU/SEI-95-TR-021.

Barbacci, M.R., Klein, M.H., Weinstock, C.B., 1997. Principles for
evaluating the quality attributes of a software architecture. SEI,
Carnegie Mellon University, Pittsburgh, CMU/SEI-96-TR-036.

Bays, M., 1995. Impact of IS alignment strategies on organizational
perceptions of quality. In: Proceedings of the 28th Annual Hawaii
International Conference on System Sciences, Hawaii, USA.

Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J.,
Merritt, M.J., 1978. Characteristics of Software Quality. American
Elsevier, New York.

Cardenas-Garcia, S.R., 1991. A formal framework for evaluating
multiattribute software specifications. Ph.D. Thesis, Department of
Computer Science, University of Maryland, College Park.

Christie, A.M., 1994. A practical guide to the technology and adoption
of software process automation. SEI, Carnegie Mellon University,
Pittsburgh, CMU/SEI-94-TR-007.

Cusumano, M.A., Kemerer, C.F., 1990. A quantitative analysis of US
and Japanese practice and performance in software development.
Management Science 36 (11), 1384-1406.

Best, E., Devillers, R., Koutny, M., 2000. Petri Net Algebra Mono-
graphs in Theoretical Computer Science. Springer, Berlin.

Fenton, N., 1991. Software Metrics: A Rigorous Approach. Chapman
& Hall, London.

Florac, W.A., 1992. Software quality measurement: a framework for
counting problems and defects. SEI, Carnegie Mellon University,
Pittsburgh, CMU/SEI-TR-22.

Glaser, B.G., Strauss, A.L., 1967. The Discovery of Grounded Theory.
Aldine, Chicago, IL, USA.

8 We are assuming a random sample here.

933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951

952

953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983

985
986
987
988
989

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019

JSS 7268
DISK / 26/9/01

ARTICLE IN PRESS

No. of pages: 17
DTD 4.2.0/ SPS

B. Brinton Anderson et al. | The Journal of Systems and Software xxx (2001) xxx—xxx 17

Goel, A., 1985. Software reliability models: assumptions, limitations
and applicability. IEEE Transactions on Software Engineering SE-
11, 1141-1423.

Green, P.E., Rao, V.R., 1971. Conjoint measurement for quantifying
judgmental data. Journal of Marketing Research 8 (August), 355—
363.

Green, P.E., Srinivasan, V., 1978. Conjoint analysis in consumer
research: issues and outlook. Journal of Consumer Research 5
(September), 103-123.

Green, P.E., Srinivasan, V., 1990. Conjoint analysis in marketing: new
issues with implications for research and practice. Journal of
Marketing 54 (4), 3-19.

Hair, J.F., 1992. Multivariate Data Analysis with Readings, third ed.
Macmillan, New York, NY, USA.

Halstead, M., 1977. Elements of Software Science. Elsevier, North-
Holland, New York.

IEEE, 1992. Standard for a software quality metrics methodology.
IEEE, Standard 1061-1992.

Keeney, R.L., Raiffa, H., 1976. Decisions With Multiple Objectives:
Preferences and Value Tradeoffs. Wiley, New York.

Keller, S.E., Kahn, L.G., Panara, R.B., 1990. Specifying software
quality with metrics. In: Thayer, R.H., Dorfman, M. (Eds.), System
and Software Requirements Engineering. IEEE Computer Science
Press, Silver Spring.

Kekre, S., Krishnan, M.S., Srinivasan, K., 1995. Drivers of customer
satisfaction for software products: implications for design and
service support. Management Science 41 (9), 1456-1470.

Luce, D.R., Tukey, J.W., 1964. Simultaneous conjoint measurement: a
new type of fundamental measurement. Journal of Mathematical
Psychology 1 (February), 1-27.

McCabe, T., 1976. A complexity measure. IEEE Transactions on
Software Engineering SE-2, 308-320.

Nunnally, J.C., 1978. Psychometric Theory. McGraw Hill, New York.

Perry, D.E., Romanovsky, A., Tripathi, A., 2000. Current trends in
exception handling. IEEE Transactions on Software Engineering.
26 (9), 817-819.

QAI, 1989. Measurement of the customer’s view of information
systems quality. QAI Research Report #1. Quality Assurance
Institute, Orlando.

Wittink, D.R., Krishnamurthi, L., Reibstein, D.J., 1990. The effect of
differences in the number of attribute levels on conjoint results.
Marketing Letters 1 (2), 113-129.

Wonnacott, T.H., Wonnacott, R.J., 1984. Introductory Statistics for
Business and Economics, third ed. Wiley, Chichester.

Bonnie Brinton Anderson is a Ph.D. student at the H. John Heinz III
School, Carnegie Mellon University. Her research interests include
organizations and information systems.

Akhilesh Bajaj is Assistant Professor of Information Systems Man-
agement, at the H. John Heinz 111 School, Carnegie Mellon University.
He holds a Ph.D. in MIS from the University of Arizona, an MBA
from Cornell University and a B.Tech. from the Indian Institute of
Technology, Bombay. His research interests include building large-
scale information systems in organizations, usability engineering and
the evaluation, adoption and usage of information systems by indi-
viduals and organizations.

Wilpen Gorr is Professor of Public Policy and Management Informa-
tion Systems at the H. John Heinz III School, Carnegie Mellon Uni-
versity. His research interests include information systems, including
geographic information systems, and decision support systems.

1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

